
Smallest induced drag over the wing 

1. Problem-  

 For a wing given li-, the lowest induced drag is obtained at the prescribed 
range if the li- is distributed along a semi-ellipse. The secondary condi=on that the 
span is prescribed is, however, absolutely essen=al, and the asser=on that the ellip=cal 
li- distribu=on is the best is absolutely inadmissible. The greater the span, the smaller 
the induced drag. If, in a special case, the range of the aircra- is limited by the 
requirement that the aircra- can be pushed through a certain predetermined hall door, 
it is appropriate to ellip=cally distribute the buoyancy within the prescribed range. But 
if there is no such limita=on, then one will have to look to other points of view. Any 
increase in the span is forbidden due to the weight of the spar, which in this case is too 
heavy. A formula=on of the weight of the non-load-bearing parts, which does jus=ce to 
the aeronau=cal issues, is to be regarded as given, and that the wing is now looking for 
the shape of the wing through which the total wing resistance (induced plus profile 
resistance), in which the spar weight also has an effect, becomes a minimum. It would 
be very difficult to formulate this problem as a problem of varia=on. 
 A simpler task is to be set here, but it is to be carried out precisely. One 
comes to a reasonable limita=on of the span also by prescribing the moment of iner=a 

 of the li- distribu=on in addi=on to the total li-  of the wing.  is then the 
“radius of iner=a/gyra=on” of the li- distribu=on. You are guided to the moment of 
iner=a of the li- distribu=on if you set the weight of the spar at every point 
propor=onal to the bending moment  ac=ng there. However, this would only apply 
exactly if the spar had the same support height everywhere and the web weight were 
negligible compared to the weight of the flanges. A-er all, it already means an 
approxima=on of what one actually wants to print out when one s=pulates that a 
certain amount should not be exceeded with the hydrofoil 

 

 The double of this integral can now be surrounded by two par=al integra=on 
directly into the above-men=oned moment of iner=a of the li- distribu=on. If one 
expresses the buoyancy/(maybe li-?) with the help of the KUTTA-JOUKOWSKIAN 
theorem by the formula 
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where 

 

The first expression disappears here. The second par=al integra=on now yields  

 

in a simple way, which corresponds to our claim above. 
 Our mathema=cal problem should therefore be: It is to make  

 

to a minimum under the secondary condi=ons 

 

and 

 

 Here,  is the downwash velocity on the wing belonging to the circula=on 
distribu=on  according to the wing theory. Obviously, the rule that the support radius 
 should have a certain size also makes a statement about the transverse extent of the 

wing, but one which records the mean extent of the wing and does not contain any 
binding for the design of the wing =p. In fact, this task also results in very different li- 
distribu=ons than the ellip=cal one. 

2. Implementa<on-  

 The task is now divided into two parts. Firstly, the problem of varia=on has to 
be solved, which tells us according to which law within the selected tension world of 
the li-s ?? - dividing is, and secondly a minimum problem which, in the event that the 
span is le- completely free, selects from the solu=ons admissible according to the 
varia=on problem that which gives the smallest resistance at all. 
 The problem of varia=on can be solved rela=vely easily if we make use of an 
idea from A. BETZ, namely that it is permissible to apply the varia=ons  to an 
auxiliary wing that has been shi-ed far backwards instead of on the wing itself and 
whose forward reac=on is neglected can, and which is even below the downward 
speed . If the circula=on  is the solu=on sought, then a varia=on of  must 
disappear by the addi=on of such addi=onal circula=ons  which at the same =me 
sa=sfy the secondary condi=ons. These constraints are apparently 
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, (3) 

if 
, (4) 

is, because then 3 is also fulfilled by the constraints 1 and 2. 
 The circula=on associated with the value of  given in Eq. 4 is known from old 
developments in wing theory. If you put 

, 

where  is an abbrevia=on for , you get a formula for the downward velocity which 

is exactly of the type of Eq. 4, namely  
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 This solves the problem of varia=on, and the next step is to find the best 
values of  and  that are compa=ble with the condi=ons of the task. Considering 
that  will turn out to be nega=ve, we introduce  

 
and thus get 
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Our constraints are now 
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Division immediately results in 

 

or 

  (9) 

By inser=ng i =nto Eq. 7, this gives 
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The induced resistance results according to S. 32 of the "Four Trea=ses" as 

 

Taking into account Eq. 10 

(11) 

 The course of the func=on of  occurring here, which is to be called here for 
the abbrevia=on , can be seen from the small number table below, in which the 
course of  and that of the factor of  are also given. It is easy to see that the 
minimum of  is at , which could also be demonstrated by subtrac=ng the 
differen=al quo=ent of , which exactly vanishes at . However, the func=on 
here does not have an ordinary minimum, but a turning point and decreases further 
for the values . 

 
Here, however, our task loses its sensible meaning, since nega=ve li-s occur at the 
wing =ps and consequently also nega=ve bending moments, and of course the 
nega=ve bending moments do not correspond to nega=ve spar weights, but posi=ve 
spar weights again. In the case of the sign change of  one would not have to take the 
integral over  but the integral over the absolute value of  and thus the basis of our 
whole calcula=on for this case becomes invalid. So the value of , which is reasonable 
in size, also represents the best value. In addi=on, according to the table of Yahls, the 
values of , which are considerably below 1, are not much worse. The ellip=cal li- 
distribu=on is, however, no=ceably worse in the context of our task. The figure shows 
the circula=on distribu=ons according to Eq. 5 and the associated downward veloci=es 
according to Eq. 6 for a given value of the radius of gyra=on r and a given . The 
curves a represent the ellip=cal li- distribu=on (  = 0), the curves b and c belong to  = 
1/2 and  = 1. The illustra=on shows that the recently favored Spityend wings. ?? 
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deserve our point of view in preference to those with an approximately rectangular 
outline, but that in par=cular the degree of tapering does not maker too much. 

 

3 – Summary 
 The object is to find the li- distribu=on which gives the smallest induced drag 
for a given total li- and a given moment of iner=a of the total li-. This li- distribu=on is 
not ellip=cal, but rather corresponds to that of the pointed wing.


