
Smallest induced drag over the wing


1. Problem- 


	 For a wing given lift, the lowest induced drag is obtained at the prescribed 
range if the lift is distributed along a semi-ellipse. The secondary condition that the 
span is prescribed is, however, absolutely essential, and the assertion that the elliptical 
lift distribution is the best is absolutely inadmissible. The greater the span, the smaller 
the induced drag. If, in a special case, the range of the aircraft is limited by the 
requirement that the aircraft can be pushed through a certain predetermined hall door, 
it is appropriate to elliptically distribute the buoyancy within the prescribed range. But 
if there is no such limitation, then one will have to look to other points of view. Any 
increase in the span is forbidden due to the weight of the spar, which in this case is too 
heavy. A formulation of the weight of the non-load-bearing parts, which does justice to 
the aeronautical issues, is to be regarded as given, and that the wing is now looking for 
the shape of the wing through which the total wing resistance (induced plus profile 
resistance), in which the spar weight also has an effect, becomes a minimum. It would 
be very difficult to formulate this problem as a problem of variation.

	 A simpler task is to be set here, but it is to be carried out precisely. One 
comes to a reasonable limitation of the span also by prescribing the moment of inertia 

 of the lift distribution in addition to the total lift  of the wing.  is then the 
“radius of inertia/gyration” of the lift distribution. You are guided to the moment of 
inertia of the lift distribution if you set the weight of the spar at every point 
proportional to the bending moment  acting there. However, this would only apply 
exactly if the spar had the same support height everywhere and the web weight were 
negligible compared to the weight of the flanges. After all, it already means an 
approximation of what one actually wants to print out when one stipulates that a 
certain amount should not be exceeded with the hydrofoil





	 The double of this integral can now be surrounded by two partial integration 
directly into the above-mentioned moment of inertia of the lift distribution. If one 
expresses the buoyancy/(maybe lift?) with the help of the KUTTA-JOUKOWSKIAN 
theorem by the formula
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where





The first expression disappears here. The second partial integration now yields 





in a simple way, which corresponds to our claim above.

	 Our mathematical problem should therefore be: It is to make 





to a minimum under the secondary conditions





and





	 Here,  is the downwash velocity on the wing belonging to the circulation 
distribution  according to the wing theory. Obviously, the rule that the support radius 
 should have a certain size also makes a statement about the transverse extent of the 

wing, but one which records the mean extent of the wing and does not contain any 
binding for the design of the wing tip. In fact, this task also results in very different lift 
distributions than the elliptical one.


2. Implementation- 


	 The task is now divided into two parts. Firstly, the problem of variation has to 
be solved, which tells us according to which law within the selected tension world of 
the lifts ?? - dividing is, and secondly a minimum problem which, in the event that the 
span is left completely free, selects from the solutions admissible according to the 
variation problem that which gives the smallest resistance at all.

	 The problem of variation can be solved relatively easily if we make use of an 
idea from A. BETZ, namely that it is permissible to apply the variations  to an 
auxiliary wing that has been shifted far backwards instead of on the wing itself and 
whose forward reaction is neglected can, and which is even below the downward 
speed . If the circulation  is the solution sought, then a variation of  must 
disappear by the addition of such additional circulations  which at the same time 
satisfy the secondary conditions. These constraints are apparently
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if
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is, because then 3 is also fulfilled by the constraints 1 and 2.

	 The circulation associated with the value of  given in Eq. 4 is known from old 
developments in wing theory. If you put


,


where  is an abbreviation for , you get a formula for the downward velocity which 

is exactly of the type of Eq. 4, namely 
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	 This solves the problem of variation, and the next step is to find the best 
values of  and  that are compatible with the conditions of the task. Considering 
that  will turn out to be negative, we introduce 




and thus get
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Our constraints are now
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Division immediately results in
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By inserting i tinto Eq. 7, this gives
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The induced resistance results according to S. 32 of the "Four Treatises" as





Taking into account Eq. 10


(11)


	 The course of the function of  occurring here, which is to be called here for 
the abbreviation , can be seen from the small number table below, in which the 
course of  and that of the factor of  are also given. It is easy to see that the 
minimum of  is at , which could also be demonstrated by subtracting the 
differential quotient of , which exactly vanishes at . However, the function 
here does not have an ordinary minimum, but a turning point and decreases further 
for the values .




Here, however, our task loses its sensible meaning, since negative lifts occur at the 
wing tips and consequently also negative bending moments, and of course the 
negative bending moments do not correspond to negative spar weights, but positive 
spar weights again. In the case of the sign change of  one would not have to take the 
integral over  but the integral over the absolute value of  and thus the basis of our 
whole calculation for this case becomes invalid. So the value of , which is reasonable 
in size, also represents the best value. In addition, according to the table of Yahls, the 
values of , which are considerably below 1, are not much worse. The elliptical lift 
distribution is, however, noticeably worse in the context of our task. The figure shows 
the circulation distributions according to Eq. 5 and the associated downward velocities 
according to Eq. 6 for a given value of the radius of gyration r and a given . The 
curves a represent the elliptical lift distribution (  = 0), the curves b and c belong to  = 
1/2 and  = 1. The illustration shows that the recently favored Spityend wings. ?? 

Γ0 =
A

πρvr

1 − μ
2

(1 − μ
4 )

3

Wi =
πρΓ2

0

8 (1 −
μ
2

+
μ2

4 )

Wi =
A2

8πρv2r2

(1 − μ
2 )(1 − μ

2 + μ2

4 )
(1 − μ

4 )
3  

μ
f (μ)

b /4r Γ0
f (μ) μ  =  1

f(μ) μ = 1

μ > 1

M
M M

μ

μ

Γ0
μ μ

μ



deserve our point of view in preference to those with an approximately rectangular 
outline, but that in particular the degree of tapering does not matter too much.





3 – Summary

	 The object is to find the lift distribution which gives the smallest induced drag 
for a given total lift and a given moment of inertia of the total lift. This lift distribution is 
not elliptical, but rather corresponds to that of the pointed wing.


