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ABSTRACT

A simple theory of the lifting line type
has been developed for the design of
high efficiency rotors (propellers and
horizontal axis windmills), the
prediction of their off-design
performance, and the performance of
arbitrary rotors generally. Although
the design calculations can be carried
out with a pocket scientific calculator,
the off-design and arbitrary rotor
performance calculations are more
conveniently performed with a small
programmable digital computer. A
FORTRAN IV code named HELICE, which will
run on a PDP 10/11 computer, has been
written at M.I.T. by Mrs. Susan French
for this purpose. This paper discusses
the algorithms used in HELICE and its
application to the design and
performance prediction of propellers
for: 1. a Wakefield class rubber model;
2. a powered hang glider; 3. a self-
launching sailplane; and 4. a pedal
driven airplane. An earlier version of
this procedure was used to design
propellers for M.I.T.'s Chrysalis and
Paul MacCready's Gossamer Albatross
human powered airplanes.

INTRODUCTION

The first 1ifting line analysis of
minimum induced loss propellersl was
published by Betz (with an appendix by
Prandt1) at Goettingen in 1919. Sydney
Goldstein's 1929 doctor's dissertation,
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also done at GoettingenZ, may be
regarded as confirming the essential
correctness of the approximate radial
circulation distributions corresponding
to minimum induced loss operation
calculated by Betz and Prandtl. Glauert
seems to have been on the verge of
publishing a related propeller momentum
theory consistent with these minimum
induced loss concepts in 1934, but his
untimely death may have prevented him
from writing it down correctly3,

Since then other investigators have
considered related theories, e.q.
Lerbe4, Theordorsend, Hirschb,
Giordano/, and de Vries8, each with
varying degrees of elaboration and
specialization, but the one given below
is conceptually very simple, and has
given predictions which agree well with
experimental data%,10 for low solidity
rotors operated at low advance ratios
(V/9R < 0.5).

THE BETZ CONDITION

Betz saidl: "Die Stroemung hinter

einer Schraube mit geringstem
Energieverlust ist so, wie wenn die von
jeden Schraubenf luegel durchlaufene Bahn
(Schruabenf Taeche) erstarrt waere und
sich mit einer bestimmten
Geschwindigkeit nach hinten verscheibt,
oder sich mit einer bestimmten Winkel-
geschwindigkeit um die schraubenachse
dreht" (The flow behind a screw of
minimum energy loss is as if the path
[helicoidal surface] laid down
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by each blade were made rigid and
displaced itself toward the rear with a
certain [axial] velocity, or turned
1tself about the screw axis with a
certain angular velocity). This is
Betz's "rigid wake" condition, and
thinking of the idealized helicoidal
vortex sheets as moving rigid bodies is
exactly what has confused rotor analysts
for 60 years, since idealized "free"
vortex sheets cannot move as rigid
bodies; but they do move locally
perpendicular to themselves and they can
give the appearance of rigid body motion
if the local sheet velocity is given by
v' cosd , where v' is the radially
uniform Betz "displacement" velocity
and & is the local helix angle, measured
from a plane perpendicular to the screw
axis. This is shown in Figure 1.
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It follows that the axial velocity and
the rotational velocity of a helicoidal
vortex sheet, moving so as to satisfy
the Betz condition, is given by (I use
Glauert's notation throughout):

aia) * ¥'e05’s (1)
Weotational v'coss sing (2)

To show that this vortex sheet motion
minimizes the induced loss of a lightly
loaded rotor, consider Figure 2 which
shows the components of the local
velocity acting on a propeller blade
element, and the associated 1ift and
drag (or thrust and toraque) components
of its loading.

(i =R i)
v cos g. —

'

[)"E‘cls'g_’».fja'ugfx_:._.. P

Fig. 1 Helicoidal vortex sheet motion to fulfill the Betz

condition. Helical vortex filaments 1 and 2 appear to

move axially with the displacement velocity, v', but
actually move perpendicular to themselves with velocities
Vl and VZ.
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g. 2 Blade element velocity diagram and loading in Glauert's
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notation.

The blade element efficiency is given by and i1f the induced velocity components
are half the vortex sheet velocity
(exactly as in wing theory), one obtains
propeller 2dQ che I+a .
element . | 2
el a = l V_ -_.—‘2.4_ = | _V - l'( r]h (5)
5~y Cos“¢ 5 Y == .
= & ;= L :
‘profile "induced )a) i
i | Y "
i T i . . 3 a i ‘_'J {6'
where ¢ is the helix angle of the blade -
; 7 -1 rfﬁ}
velocity vector W, € = tan- ‘c./* V¥
- 5 . o T e SEeiE Ibstituting equations 5 and 6 1ir
is the flight velocity, @ is the shaft : Lvt g SRURET RIRS & I .
: 2 Mo B W= o equation 4 gives
velocity, and a and a' are dimensionless
measures of aV and a'@r, the axial and ;
rotational components of the induced ) e A= -
= o e Ninduced (ff

v
V

velocity, w. 1*'%

If the propeller is lightly loaded

which is maximized for the propeller as
a whole if v'/V is radially constant.
This argument is due to Glauert3,
similar arqument applies to a windmill
or "ram air turbine" blade element whose
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efficiency is the exact inverse:

= 0 _  tan(é+e) 1+a
"windmill VdT tang B B (8)
element

here Q, T, ¢, a, a' and v' are all
negative,

THE BENTZ-PRANDTL AND GOLDSTEIN
CIRCULATION DISTRIBUTIONS COMPARED

To find the circulation distribution
bound to each of B rotor blades at
radius r for the vortex sheet motion
satisfying the Betz condition, Stoke's
Law is applied to an annular tube of
radially undisturbed slipstream (1ight
loading assumed) lying between a radius
r and the outer radius R (equal to the
propeller radius), whence:

Br = 2nr - ﬁrotaticna1 (9)

The average rotational velocity
Weotational at radius r will differ
from the sheet rotational velocity, v'

cos ¢.sind [where ¢ = tan-1 {é%i] by a

factor F, which Prandt] estimated from
an analogy with the known solution in
two dimensional flow for the average
velocity of fiuid within an infinite
array of semi-infinite plates spaced a
distance s apart and moving
perpendicular to themselves. If y is
the distance from the plate edges, and v
is their common velocity [see Ref. 3],

Vaverage = F*V = % cos™!(e™") (10)
where
f = n(y/s) (11)

The corresponding value of f (the edge
distance-sheet spacing parameter) for
the flow near the edges of an array of
helicoidal vortex sheets moving with
velocity v' cosd is

2
B x°+1 r 12
f=_2"_ 2 E (1‘R) ( )
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where i, the advance ratio is
A = V/0R (13)

solving equation 9 for I'(r), introducing
the velocity fraction F, and rearranging
allows us to write an approximate
analytic expression for the dimension-
less bound circulation corresponding to
minimum induced loss:

2

Bar _ Fx (14)
= LS G St
2nVy x2+1
where
x = ar/V = (r/R)/A = E/) (15)
F=(2/1) cos (e ) (10) repeated

(8/2) (v 2241/2) (1-€)

"
"

(12) repeated

The symbol G for this normalized
circulation is chosen in honor of
Glauert and Goldstein. Values of G
calculated by equation 14 are plotted as
a function of r/R = £ for two and four
blade rotors operating at » = 0.2 and
0.5 in Figure 3. Goldstein's painfully
calculated more exact results? are
included for comparison. The quantity
s/R on the curves is the ratio of the
perpendicular edge spacing of the vortex
sheets to the propeller tip radius. |
draw the conclusion that the Betz-
Prandt1 approximate minimum induced loss
circulation is valid if s/R is less than
one. At higher values of s/R the
Betz-Prandtl distribution would require
heavier blade loading at large radii and
lighter loading at small radii, a
modification which might even be
desirable from a practical standpoint!
The quantity G has a momentum
interpretation as well. Since
X2/(x2 + 1) = cosd, G is equal to
the ratio of the average axial velocity
in the slipstream at radius r to the
displacement velocity, v'. If a single

rotation propeller could become an
"actuator disc", G would equal 1 at all
r < R, which would require B » » and
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Fig. 3 Minimum induced Toss bound circulation according to Betz
and Prandtl -- and according to Goldstein.

x » 0. High pitch propellers with a
small number of blades will always have
higher induced losses than many-bladed
flat pitch propellers because of the
inherently more periodic nature of their
slipstream flow.

COMPUTER DESIGN OF PROPELLERS
OF HIGHEST EFFICIENCY

On the other hand, the profile
efficiency, tand/tan(o + ), is
T E

maximized if ¢ =4 - 2, which would
require that ¢ be made as small as
possible, and that the most heavily
loaded blade elements operate at

¢ = 45°, corresponding to A = 1. Also,
smaller blade numbers will increase the
blade chords required to maintain the
nearly constant propeller solidity
needed to support a given disc loading,
leading to higher blade element Reynolds
numbers and reduced values for e.
Therefore, the design of a propeller of
highest efficiency for a specified disc
loading involves a balancing of the
conflicting requirements for high
induced efficiency, which favors low

advance ratios and a large number of
blades, and for high profile efficiency,
which favors a high advance ratio and a
small number of blades.

The analyst achieves this balance in
the HELICE program with a procedure
suggested by Goldstein which determines
the radially uniform displacement

- - -V s
velocity ratio, &=  , corresponding to
minimum induced loss loading for a given
wake geometry, G(B,r), and the
associated overall efficiency,
corresponding to the expected radial
distribution of blade element 1ift to
drag ratio. The procedure follows:

1) Calculate four loading integrals:

dI 1 dl
1 D/L). _ I (16)
= - -8 e e b
dI 3 |
g _ up 4% O
& = 26 [1 = | tx2+1J (17)

l | _—
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dJ
1 D
-d't:—'- A4EG [1 + (L)){I (18)
it ( Dy, | x2 )
£ =206 11+ {F)x —5— 19}
3 TaR IR J[MJ (
hrust i ified, 7 o
cAEYR - el
2) If thrust is specified, T, pvamz
[ /__hi}_
= E#“ -7 —--§ d (20)
2 v I
L 1
2p 2 .
p oz —2P =3¢+l (21)
SRR ) 2
n= Tc;’F"C (22)
: g 2p
3) If power is specified, P.=—5—%
gV R
3y |7 g, |
g = 730 /1 + g - | (23)
2 |Y Je
1 J
T 2 5o = 1 1’2 (24)
c 1> 2=
n= TSP (22) repeated

Equations 20 and 23 are the rotor
lifting line equivalents of the wing
1ifting line formula for the spanwise
constant induced angle of attack
corresponding to elliptic loading:

¢

%induced ;b?/_s_} (25)

The more complicated rotor form is
necessary to account for the wake
geometry and for the fact that the
specified thrust or power depends on the
resolution of blade element drag as well
as 1ift into thrust and torque
components.
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If the propeller efficiency given by
this procedure for various trails of B,
P (or T),V, ¢, R, and p seems to be
satisfactory, it is a simple matter to
determine the corresponding propeller
blade geometry. For the case of a
fuselage or nacelle so small compared to
the propeller that its effect of the
flow field can be neglected, the blade
element velocity helix angle and
magnitude are given by

¢t = tan_.|

Pl

]
{E {1 +'ﬂl (26)
( J ‘

‘:: B} /I;Z__L_] - {;_ 0 cos-'!'Tz (27)

The blade angle and chord are given by

B=o¢ +a (28)

R WV (29)

where o and ¢, are the blade element
design angle of attack and Tift
coefficient in "two dimensional" flow
corresponding to the values of D/L used
to calculate the blade loading integrals
Iy, Ip, J1, and JE.

As soon as the blade chord is
calculated it becomes possible to
calculate the blade element Reynolds
number, Mach number, and thickness-to-
chord ratio:

VR W
S S8 (30)
M=t (31)
$=om (32)

the quantity t/R is presumably limited
by structural constraints on strength or




stiffness. Consideration of the effect
of these parameters on the blade element
characteristics may indicate the
desirability of iterating the procedure
with improved values of D/L along the
radius. Also, the integrals Ij, Ip,

J1, and J2 depend on the light

loading assumption that W/V = ?.XZ + 1.
If ¢ is large (it is frequently larger
than r), improved values for the radial
gradients of T. and P are given by

€. oamg (X 8 cind) 33
T - 4r )G (V)(cos¢ T sing) (33)
dpP
Tﬁ? = AzEG {%}{Sinﬁ + E—ccsé) (34)

which, on integrating, will turn out to
be sligtly different from the values
given by equations 21 and 24. Some
analysts, Theodorsen, for exampled,
would iterate the calculations with
values of G[B,x(1 + 3)], but, since
experiment shows that the helicoidal
vortex sheets actually roll up quickly
at the edges for large values of Z, and
that the rolled up tip vortices preserve
the light loading helix angle tan-1j
(because the axial velocity increase at
the outer edges of the slipstream is
very small), there is no reason to
suppase that such a modification is a
step closer to reality.

On the other hand, when the fuselage
or nacelle is large enough to affect the
propeller flow field, as it almost
invariably is for piston engine
installations, the disturbance must be
taken into account and the propeller
must be "body" or, in the case of
steamboats, "wake" adapted, as suggested
by Lerbs4, If the azimuthally
averaged axial velocity to free stream
velocity ratio at radius r due to the
fuselage or nacelle (in the absence of
the propeller) is given by u, I
recommend that the blade angles be
calculated as follows:

8 = tan” % (U+3) +a (35)
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This, in combination with the chords
given by equation 29, will tend to
preserve the minimum induced loss radial
loading. More will be said about the
effects of the body on the net
propulsive efficiency in a later section.

OFF-DESIGN AND ARBITRARY ROTOR PERFORMANCE

If it is assumed that the changes in
axial and rotational momenta in every
annulus of slipstream behind an isolated
rotor are due solely to the loads on the
blade elements in contact with it, that
the average slipstream volocity changes
are less than the sheet velocities by
Prandt1's factor F, and that the axial
and rotational components aV and a'Qr of
the induced velocities are half the
"ultimate" sheet velocities, the
following approximate equations can be
written for the radial gradients of
thrust and torque:

]

dt = (2nr)pv(1 + a)2F(aV)

. %_BUZ(%TgaijBc(cl cosy - cy sing) 136)

5|
SIS
1]

(2nr)av(] + a)ZE(a'nr}

v (—Tfféﬂzac[cl siny + ¢4 cosé) (37)

|
oy —
r
-
W
=
r

These can be solved for the induced
velocity components to yield

{cgcos¢ - ¢4 sing)

a 1a
~+a 4F T 38
1 T a 4 F sian ( )
' _1le {cisino + cdc02:) (39)
1+ a 4 F sing COS®

where o =Bc/2nr is the local rotor
solidity. These equations appear
incorrectly, with F in the numerator, in
Glauert's article3 written just before
his death. Equations 38 and 39 are
anlogous to an approximate lifting line
theory for wings in which the induced
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angle at any spanwise location is
assumed to depend only on the local
spanwise loading, thus:

1. ¢/fb
il

TGy (40)

%induced

1< (2yp)?

Here Yl - (2y/b)2 plays the role of F
in equations 38 and 39. If we consider
a flat, elliptic planform wing with a
spanwise constant cg = C| = Lift/qS,

C
cC_ /0O 2
b fj;) Vr1 - (2y/b)" and S = g-cob,
we find that equation 40 gives
the familiar spanwise constant induced

angle of attack,

o CL
induced = >
elliptic n(b%/3)
Toading

Application of equation 40 to arbitrary
wings gives plausible spanwise 1ift
distributions which diverge from the
more correct Fourier harmonic solutions
of Glauert in proportion to their
departure from elliptic loading. Many
writers have commented on the '
approximate "radial independence of
blade elements" which equations 36 and
37 imply, and how equations 38 and 39
can be expected to be more valid than
equation 40.

To find the radial Toad distribution
on a rotor blade, it is convenient to
make the characteristics of the blade
element airfoils functions of the angle
of attack between #90°, thus:

m
B

€y = cl](cosaz’cosa]} (41)

£ |51nal (42)
4, S

6y = 8y ¥ B, g Y ay) (43)

I

g, + Ldey/ala]la - 03" (4
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(12 <qa < w2
By = CE’Z (cosa/cosaz) (45)
cq = |sinal (42) repeated

Such a model of blade element aero-
dynamics has been found to represent
rotor stalling realistically.

To find the load at a given radial
station, an initial angle of attack ay
is chosen, and the following quantities
are computed:

by =BG, (46)
Cin = cl(ﬁ) (equations 41,43, or 45)
g cqla) (equations 42 or 44)
n
a = afo,F, *np S, Cd ) (equation
38)
a’n =a (o, F, 6. » €, ¢ ) (equation
I n n
39)
by = tan” [ (/E)(T + ay)
HI[ n
1= @ ) ] (47)
¢I’11— - ¢nII (48)

The process is then iterated with a new
value of «

=g * % (3 - ¢ ) (49)

until the absolute value of (¢n[_ ¢"“) is
less than some small number {e.g. 0.001°)
The converged values of a', ¢, cy, and

Cq4 are then used to find the radial
gradients of the thrust and power
coefficients based on the shaft speed at
each radial station:




(l:if }‘ 3

E”o (cgcosé - €4sing)

(50)

2%
} £'g (c,sing + cdcos¢)
(51)

These are integrated radially to find
Ct and Cp.

n = Qf2n
S S e
T5 723 dE 955 1 p = 2r

pn-D Ju
R

" P . dCP i

P o d 2
pn~D Jo

These may be compared readily with the
thrust and power coefficients based on
the forward speed, which may have been
used in the minimum induced loss rotor
design procedure described before, by
the following conversions:

o B OT (52)
C ;? N
c

Po = & = (53)
A

Propeller performance is usually
presented in terms of Cy and Cp as
functions of the advance ratio, i, or
the effective pitch/diameter ratio,

J = wA, because there is always a shaft
speed even though V may be zero;
windmill performance is usually
presented as T¢ and P¢ (or their
negatives) versus 1/ix = tip speed/wind
speed ratio, because there is always a
wind speed even though the shaft speed
may be zero.

When the geometry and characteristics
of a minimum induced loss rotor,
designed by the procedure of Section IV,
are used to predict rotor performance at
the design point according to the
algorithms of Section V, the values of
Tc and P are found to be slightly
different. These differences were
attributed to the fact that equations 38

e e
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and 39 caused the profile drag to
influence the axial (aV) and rotational
(a'Qr) components of the induced
velocity. The equations were then
modified to read

a2 .19 5Co% (38a)
1+a 4 F 5in2¢
aI 1 a CESin¢
T-a © 4 F Sing coss (39a)

which did not improve the differences
for the one test case investigated;
nevertheless, equations 38a and 39a are
incorporated into HELICE as being
simpler and conceptually more consistent.

FUSELAGE OR NACELLE EFFECTS

To account for the rotor loading in the
presence of a fuselage or nacelle which
causes the average axial component of
the flow (in the absence of the rotor)
to have a value u £ 1 (see section IV,
equation 35), equation 38 (or 38a) is
rewritten

}01‘"

(czcos¢ - Cysing 1 C, COSop

L
sin ¢
(38b)

and the iteration equation, 47, is
rewritten

Implementation of the iteration
procedure for the typical case of u < 1
then Teads to higher values of blade
ang]edof attack and higher values of 91

c d
and Tﬁ? than for u = 1 as would be
expected. These correspond to the
"gross" loading of the rotor operating
in the body flow field.

The calculation of the corresponding
"net" thrust of the rotor-body combina-
tion then leads to different treatments
for tractor and pusher propeller
installations. For the case of a
tractor propeller, the quantity u # 1
reflects the potential flow field at the
body nose which may be modeled by a

§F

i
|
a

o
u+a sin ¢

1

{u+a)

) = tan’
1-a )

iy (47a)

—

A
3
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source-sink distribution along the body
and rotor axis, or another more exact
panel-singularity procedure. Account
must then be taken (at least) of the
buoyancy drag of the body arising in
consequence of the axial variation of
the rotor pressure field.

The buoyancy drag is given by

1

- b2 . dS
Dragbuoyancy 2V fﬂp ax 4% (54)

1

where Ap is the overpressure due to the
propeller, S is the body cross section
area, and x is distance along the body
axis of length L. Koningll gjves an
approximate relation for ap as a
function of ax downstream and upstream
of the rotor:

r

[Te [, _axr . ax ()
W |2 ATy

(downstream)

2 (el Jam | ax (9
2 Y1+ ({ax/R)? (upstream)
(55)

A tractor propeller has comparatively
1ittle effect upon the skin friction of
the body boundary layer if the boundary
layer is already assumed turbulent,
because a single rotation propeller is
inherently incapable of increasing the
axial slipstream velocities close to the
axis. It is capable of imparting
considerable rotational velocity to the
slipstream, however, and this, in
combination with the periodic injection
of blade momentum wakes into the body
boundary layer, will almost certainly
provoke transition of an otherwise
laminar boundary Tayer.

A pusher propeller installation also
may have u < 1 by reason of the body
potential flow field, and the body may
have buoyancy drag by virtue of the
negative axial gradient of the rotor
pressure in the vicinity of its tail,
but the effects of the running propeller
on the body boundary layer are
predominantly favorable. There is a
well known instance of a prototype
tandem twin engine airplane which was
incapable of maintaining single engine
flight on its forward propeller because

of the excessive drag produced by
separation of the body boundary layer
after the aft propeller was stopped. In
the case of "pusher" steamboat
propellers, operational considerations
force the propeller to be made so small
that it is almost entirely immersed in
the hull boundary layer, and a propeller
design philosophy of "erasing" the
remote hull wake is adopted.

In the HELICE program the treatment of
body interference is under the control
of the analyst. He can readily compare
the thrust and power absorption of an
isolated propeller (u = 1) designed to
absorb a certain power at a certain
advance ratio with minimum induced Tloss
loading, with the thrust and power
absorption of a similar propeller
"depitched" (equation 35) to support
approximately the same radial loading in
a known body flow field (u # 1). The
gross thrust coefficients for this
depitched propeller can then be debited
by a correction proportional to the
gross thrust coefficient, since the body
buoyancy drag and the slipstream dynamic
pressure increase are proportional to
Ct and Tc. In this way, the "net"
thrust of the propeller-body combination
can be made equal to (or less than) the
thrust of an isolated propeller at the
same design point. There is very little
experimental evidence to serve as a
guide; indeed, almost all experimental
data on actual propellers contains
uncompensated body interference effects
of one kind or another.

APPLICATION

1. WAKEFIELD CLASS RUBBER POWERED MODEL
AIRPLANE: Figure 4 presents the
along-axis and in-plane views of a two
bladed propeller capable of maintaining
an initial climb angle of 27.8" for a
model with a flying mass of 200 gms and
an L/D of 10. The propeller has a
diameter of 600 mm and turns at 480 rpm
at an airspeed of 5 mfs in air with a
density of 1.225 kg/m3 (760 mm Hg at
15°C). Curves are also given for Cy,

CP, and n and for radial variations of
co with different advance ratios.
Because of the Tow Reynolds number, the
blade elements are given a minimum
profile drag coefficient of 0.02, a
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maximum 1ift coefficient of 0.9, and a

value of :EQ_ = 0.0006, which makes the
d{a“deg)
drag coefficient 0.0416 at stall. Even
so, a design point efficiency of 0.798
is calculated, and a peak efficiency of
0.823 at a slightly higher advance ratio
is indicated, which would occur sometime
after launch when the rubber motor was
somewhat unwound and turning the pro-
peller more slowly. Other calculations
not given here suggest that such a
propeller in combination with a 40 gm
rubber motor would take the model to an
altitude of 55 m, and that the total
duration of flight —- power plus glide
~— would exceed 3 minutes in still air.

2. POWERED HANG GLIDER: Figure 5
presents the same information for a
propeller for a powered hang glider.

The two bladed propeller is designed to
absorb 7457 W (10 hp) at a shaft speed
of 1946 rpm [(9/37) x 8000 crankshaft
rpm] with a diameter of 1372 mm (54
inches). The airspeed is taken to be
13.41 m/s (30 mph) in sea level density
air. The propeller is really much too
small to absorb this much power at this
airspeed. Because the tip speed. is 10.4
times the flight speed, the blade chord
near the tips required to support the
Betz-Prandtl circulation is small, but
the chord near the blade roots is
immense, which might be structurally
desirable. The design point efficiency
is calculated to be between 0.55 and
0.62 when appropriate airfoil section
data are used. The iteration procedure
given in Section V refuses to converge
for advance ratios much below the design
point. The theory of this paper was not
meant to apply to such a heavily loaded
propeller,

3. SELF-LAUNCHING SAILPLANE: Figure 6
presents the propeller characteristics
and Figure 7 presents the calculated
performance of a self-launching
sailplane fitted with a HELICE designed
propeller and powered by a snowmobile
engine. The engine puts out 13.42 kW

(18 hp) at 6000 rpm in sea level density
air. The two bladed propeller of 889 mm
(35 inch) diameter is designed to

absorb this power at an airspeed of

30 m/s (67 mph), and will give a rate of
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climb of 2.6 m/s (510 ft/min) at this
speed at a flying mass of 239 kg (527
1b). At airspeeds higher than 30 m/s,
the engine must be throttled to prevent
overspeeding. Even so, the engine
propeller combination appears to be
capable of maintaining level flight at
an airspeed of 43.5 m/s (97 mph) with a
part throttle output of 10 kW (13.4 hp)
at 6000 rpm. The high tip speeds

(R = 279 m/s or Ma = 0.82) help keep
the blade area small to reduce the
airframe drag when the propeller is
stopped.

4. PEDAL DRIVEN AIRPLANE PROPELLER:
Figure 8 gives the geometry performance,
and radial 1ift coefficient distribution
for a propeller similar to that used on
the Chrysalis and Gossamer Albatross
airplanes. This two bTaded propelTer is
designed to absorb 373 W (0.5 hp) at a
shaft speed of 125 rpm and an airspeed
of 5 m/s, corresponding to steady
climbing flight. Selection of a
diameter of 4.267 m (14 ft) and a design
point 1ift coefficient of 0.8 insures a
climb efficiency of 0.83 and cruise
efficiencies of nearly 0.90. The
propeller design and performance
algorithms which I wrote in an early
version of this paperl? were used by

my student, Hyong Bang, to write the
program used to design the Chrysalis and
Gossamer Albatross airplanes. Its

astonishing success led to the
development of HELICE, which is more
flexible in its application.

AVAILABILITY OF HELICE

Mrs. French and I have been continually
debugging HELICE since the first
workable versions were available late in
1979. The discovery in the spring of
1980 that it would design minimum
induced Toss windmills and predict their
off-design performance has led to the
generalization of the "print" statements
(e.g. "ROTOR" now replaces "PROPELLER")
and the incorporation of certain escape
modes to terminate cases without loss of
previously stored information when
improper operation is indicated

(e.g. a < -0.5, corresponding to the
vortex ring state). It is planned to
make program listings, floppy disc
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inputs, and user's manuals available
through M.I.T. during the summer of 1981
at a price comparable to two programmer
man weeks, Please address all inguiries
to Mrs. Susan E. French, Room 41-317,
M.I1.T., Cambridge, MA 02139, USA.
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