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Design of Optimum Propellers
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and
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Improvements have been made in the equations and computational procedures for design of propellers and
wind turbines of maximum efficiency. These eliminate the small angle approximation and some of the light
loading approximations prevalent in the classical design theory. An iterative scheme is introduced for accurate
calculation of the vortex displacement velocity and the flow angle distribution. Momentum losses due to radial
flow can be estimated by either the Prandtl or Goldstein momentum loss function. The methods presented here
bring into exact agreement the procedure for design and analysis. Furthermore, the exactness of this agreement
makes possible an empirical verification of the Betz condition that a constant-displacement velocity across the
wake provides a design of maximum propeller efficiency. A comparison with experimental results is also
presented.

Nomenclature
a = axial interference factor
a' = rotational interference factor
B = number of blades
b = axial slipstream factor
Cd = blade section drag coefficient
C, = blade section lift coefficient
Cp - power coefficient, P/pn3D5

CT = thrust coefficient, T/pn2D4

Cx = torque force coefficient
Cy = thrust force coefficient
c = blade section chord
D = propeller diameter, 2R
D' = drag force per unit radius
F = Prandtl momentum loss factor
G = circulation function
/ = advance ratio, VlnD
K = Goldstein momentum loss factor
L' = lift force per unit radius
n = propeller rps
P = power into propeller
Pc = power coefficient, 2P/pV37rR2

Q = torque
R = propeller tip radius
r = radial coordinate
T = thrust
Tc = thrust coefficient, 2T/pV27rR2

V = freestream velocity
v' = vortex displacement velocity
W = local total velocity
wn = velocity normal to the vortex sheet
wt = tangential (swirl) velocity
x = nondimensional distance, £lrlV
a = angle of attack
j8 = blade twist angle
F = circulation
s = drag-to-lift ratio
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£ = displacement velocity ratio, v'lV
17 = propeller efficiency
A = speed ratio, V/flR
g = nondimensional radius, r/R = AJC
\e = nondimensional Prandtl radius
£0 = nondimensional hub radius
p = fluid density
a = local solidity, Bc/2/nr
<f> — flow angle
<f)t = flow angle at the tip
fl = propeller angular velocity

Superscript
' = derivative with respect to r or £, unless otherwise

noted

Introduction

I N 1936, a classic treatise on propeller theory was authored
by H. Glauert.1 In this work, a combination of momentum

theory and blade element theory, when corrected for mo-
mentum loss due to radial flow, provides a good method for
analysis of arbitrary designs even though contraction of the
propeller wake is neglected. Although the theory is developed
for low disc loading (small thrust or power per unit disc area),
it works quite well for moderate loading, and in light of its
simplicity, is adequate for estimating performance even for
high disc loadings. The conditions under which a design would
have minimum energy loss were stated by A. Betz2 as early
as 1919; however, no organized procedure for producing such
a design is evident in Glauert's work. Those equations which
are given by Betz make extensive use of small-angle approx-
imations and relations applicable only to light loading con-
ditions. Theodorsen3 showed that the Betz condition for min-
imum energy loss can be applied to heavy loading as well.

In 1979, E. Larrabee4 resurrected the design equations and
presented a straightforward procedure for optimum design.
However, there are still some problems: first, small angle
approximations are used; second, the solution for the dis-
placement velocity is accurate only for vanishingly small val-
ues (light loading), although an approximate correction is
suggested for moderate loading; and third, there are viscous
terms missing in the expressions for the induced velocities.
These viscous terms must be included in the design equations
if they are to be consistent with the classical propeller analysis.
This approach is given later.
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The purpose of this article is to correct these difficulties
and bring the design method into exact agreement with the
analysis. It is then possible to verify empirically the optimality
of the design. This work was initiated at McDonnell Douglas
in 1980 in response to a requirement for simple estimates of
propeller performance. In-house methods, if they existed, had
been irretrievably archived. An early version was presented
as AIAA Paper 83-0190. Continuous requests for copies of
the paper plus some refinements to the method have moti-
vated its publication in the Journal.

Momentum Equations
Detailed axial and general momentum theory is described

by Glauert,1 and only a brief summary is given here to em-
phasize several important features. Consider a fluid element
of mass dm, far upstream moving toward the propeller disc
in a thin, annular stream tube with velocity V. It arrives at
the disc with increased velocity, V(l + 0), where a is the
axial interference factor. At the disc, dm exists in the annulus
27rr dr, and the mass rate per unit radius passing through the
disc is 2irrpV(l + a), neglecting radial flow. The element dm
moves downstream into the far wake, increasing speed to the
value V(l 4- &), where b is the axial slipstream factor. Axial
momentum theory determines b to be exactly 20, whereas the
general theory (which includes rotation of the flow) deter-
mines b to be approximately 2a. Using the axial approxi-
mation, which is generally accepted, the overall change in
momentum of the element is 2VaF dm where F, the momen-
tum loss factor, accounts for radial flow of the fluid. The
thrust per unit radius T', acting on the annulus can now be
expressed as

i rri

T = — = 27rrpV(l + a)(2VaF) (la)

By similar arguments, the torque per unit radius Q' is given
by

Q'lr = 2irrpV(l + a)(2Slra'F) (Ib)

Flow geometry about a blade element at the disc is shown in
Fig. 1, where W acts on the blade element with a, and acts
on the disc at <j>. F goes from about 1 at the hub (where the
radial flow is typically negligible), to 0 at the tip, and is not
unlike the spanwise loading of a wing. The functional form
of this factor was first estimated by Prandtl1-2 and a more
accurate, though more complex, form was determined by
Goldstein5 and Lock.6"8

Circulation Equations
At each radial position along the blade, infinitesimal vor-

tices are shed and move aft as a helicoidal vortex sheet. Since
these vortices follow the direction of local flow, the helix angle
of the spiral surface is ((>, shown in Fig. 1. The Betz condition
for minimum energy loss, neglecting contraction of the wake,
requires the vortex sheet to be a regular screw surface; i.e.,
rtan <t> must be a constant independent of radius. Theodorsen3

AXIS

VORTEX FILAMENT
AFTER TIME
INCREMENT, At

VORTEX FILAMENT (t = 0)

Fig. 2 Definition of displacement velocity v' in the propeller wake.

develops the Betz condition for heavy loading by including
the contraction of the wake. He shows that sufficiently far
downstream in the contracted wake, the vortex sheet must
be the same regular screw surface for a propeller of minimum
induced energy loss. This optimum vortex sheet acts as an
Archimedean screw, pumping fluid aft between rigid spiral
surfaces.

At the blade station, r, the total lift per unit radius is given
by

L> = f = BpWT (2)

and in the wake, the circulation in the corresponding annulus
is

BY = 27rrFwf (3)

Setting the circulation F in Eq. (2) equal to that in Eq. (3)
will ultimately determine that circulation distribution F(r) that
minimizes the induced power of the propeller.

In order to obtain F(r), it is necessary to relate vvr to a more
measurable quantity. Figure 2 shows the wake vortex filament
at station r and the definition of the various velocity com-
ponents there. The motion of the fluid must be normal to the
local vortex sheet, and this normal velocity is wn. Therefore,
the tangential velocity is given by

Wt = wn sin </>

However, for a coordinate system fixed to the propeller disc,
the axial velocity of the vortex filament would be

v' = H^/COS (/>

where the increase in magnitude of v' over wn is due to ro-
tation of the filament. This is analogous to a barber pole where
it appears that the stripes are translating in spite of the fact
that only a rotational velocity exists. It will become clear that
it is convenient to use v', and the corresponding displacement
velocity ratio, £ = v'lV. The tangential velocity is then

Wt = V£ sin cf> cos 4>

and the circulation of Eq. (3) can be expressed as

F - 27rV2£G/(Bty (4)

G = F x cos (/> sin </> (5)

DISC PLANE
Fig. 1 Flow geometry for blade element at radial station r.

and x is the speed ratio given by
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DISC PLANE-

Fig. 3 Force diagram for a blade element.

The circulation equations for thrust T , and torque Q', per
unit radius can be written by inspection of Fig. 3 as

T = L' cos 0 - D' sin 4> = L' cos 0(1 - e tan <£) (6a)

Q'lr = L' sin <£ + D' cos 0 = L' sin </>(! + e/tan
(6b)

where e is the drag-to-lift-ratio of the blade element. Next,
using Eq. (2), L' can be replaced by F(r) which, in turn, is
related to conditions in the wake by Eq. (3). Based on the
flow in the wake, F(r) is given by Eqs. (4) and (5), and T
and Q'lr are reduced to being functions of <f> and the dis-
placement velocity, £ = v'lV. The local flow angle <f> will
clearly be a function of the radius; however, at this stage of
the analysis, the optimum distribution £(r) is not yet deter-
mined. Several diagrams and an excellent photograph of the
vortex sheet can be found in a 1980 work by Larrabee.9

Condition for Minimum Energy Loss
At this point, a departure from Larrabee's4 design proce-

dure is made, and the momentum equations, Eqs. (1), and
the circulating equations, Eqs. (6), are required to be equiv-
alent. This condition results in the interference factors being
related to £ by the equations

a = (£/2)cos2(£(l - £ tan </>) (7a)

a' '= (£/2*)cos (/> sin <£(! + e/tan </>) (7b)

where Eqs. (4) and (5) have been used to express L' in terms
of £, and the terms in epsilon correctly describe the viscous
contribution. Equations (7), together with the geometry of
Fig. 1, lead to the important simple relation

tan <£ = £/2)/x - (1 + £/2)X/( (8)

Here, A is a constant, and £ varies from £0 at the hub to unity
at the edge of the disc. The relation between the two non-
dimensional distances and the constant speed ratio is

x = = (r/R)/\ = f/A

Recalling the Betz2 condition, r tan </> = const, Eq. (8)
proves that for the vortex sheet to be a regular screw surface,
£ must be a constant independent of radius. This is the con-
dition for minimum energy loss. It should be noted that Eq.
(8) results from Eq. (7) whether viscosity is included or not.

Constraint Equations
For design, it is necessary to specify either 7, delivered by

the propeller or the power P, delivered to the propeller. The
nondimensional thrust and power coefficients used for design
are

Tc = 2T/(pV2irR2) (9a)
Pc = 2P/(pV37rR2) = 2Q(l/(pV3>7TR2) (9b)

and using these definitions, Eq. (6) can be written as

T'c = I(£ - Itf (lOa)
P'C=J[{ + J& (lOb)

where the primes denote derivatives with respect to f, and

/; = 4£G(1 - e tan 0) (lla)

1'2 = A(/;/2£)(l + e/tan </>)sin <j> cos </> (lib)

/; - 4fG(l + e/tan 0) (lie)
J'2 = (/;/2)(l - s tan </>)cos2 0 (lid)

Since £ is constant for an optimum design, a specified thrust
gives the constraint equations

£ = (A/2/2) - [(A/2/,)2- TC/I2]»2 (12)

PC = J^ + /2f2 (13)

Similarly, if power is specified, the constraint relations are

£ = ~(JJ2J2) + [(V2/2)2 + PJJ^'2 (14)

Tc = U - I2£2 (15)

where the integration has been carried out over the region
f = & t o f = 1.

Blade Geometry
For the element dr of a single blade at radial station r, let

c be the chord and Cl the local lift coefficient. Then, the lift
per unit radius of one blade is

= Pwr

(16)

where F is given by Eq. (4). It follows directly that

We = 47rXGVR£/(ClB)

Assume for the moment that £ is known; then the local value
of cj) is known from Eq. (8), and the above relation is a
function only of the local lift coefficient. Since the local Rey-
nolds number is We divided by the kinematic viscosity, Eq.
(16) plus a choice for C/ will determine the Reynolds number
and £, from the airfoil section data. The total velocity is then
determined by Fig. 1 as

W = V(l + fl)/sin (17)

where a is given by Eq. (7), and the chord is then known from
Eq. (16). If the choice for C/ causes £ to be a minimum, then
viscous as well as momentum losses will in most cases be
minimized, and overall propeller efficiency will be the highest
possible value. For preliminary considerations, it is usually
sufficient to choose one Ch the design Ch for determining
blade geometry. (Any Cl specification is permissible as long
as the optimum blade loading distribution, cC/(r), is main-
tained.) Since a is known from C, and Reynolds number, the
blade twist with respect to the disc is j8 = a. + <f). G is zero
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at the edge of the disc, and the tip chord is therefore always
zero for a finite lift coefficient.

Design Procedure
Either F or K, relation for the momentum loss function can

be selected. For the sake of simplicity, only the Prandtl re-
lation is described as

where

F = (2/77)arc

f=

(18)

(19)

and </>, is the flow angle at the tip. From Eq. (8)

tan <t>t = A(l + £/2) (20)

so that a choice for £ determines the function F as well as <f>
by

tan $ = (tan <£, (21)

which is simply the condition that the vortex sheet in the wake
is a rigid screw surface (r tan <£ = const). For an initial value,
£ = 0 will suffice.

The design is initiated with the specified conditions of power
(or thrust), hub and tip radius, rotational rate, freestream
velocity, number of blades, and a finite number of stations
at which blade geometry is to be determined. Also, the design
lift coefficient—one for each station if it is not constant—
must be specified. The design then proceeds in the following
steps:

1) Select an initial estimate for £ (£ = 0 will work).
2) Determine the values for F and <j) at each blade station

by Eqs. (18-21).
3) Determine the product We, and Reynolds number from

Eq. (16).
4) Determine e and a from airfoil section data.
5) If e is to be minimized, change C, and repeat Steps 3

and 4 until this is accomplished at each station.
6) Determine a and a' from Eq. (7), and Wfrom Eq. (17).
7) Compute the chord from step 3, and the blade twist

)3 = a + (f>.
8) Determine the four derivatives in / and / from Eq. (11)

and numerically integrate these from £ = £0 to £ = 1.
9) Determine £ and Pc from Eqs. (12) and (13), or £ and

Tc from Eqs. (14) and (15).
10) If this new value for £ is not sufficiently close to the

old one (e.g., within 0.1%) start over at step 2 using the
new £.

11) Determine propeller efficiency as TJPC, and other fea-
tures such as solidity.

The above steps converge rapidly, seldom taking more than
three or four cycles. An accurate description of viscous losses
can be obtained by creating another design with e equal to
zero and noting the difference in propeller efficiency.

Analysis of Arbitrary Designs
The analysis method is outlined here in order to discuss

problems of convergence for off design and for square-tipped
propellers in general, and to point out two minor errors in
Glauert's work. Figure 4, which is simply an alternate version
of Fig. 3, shows the relation between the propeller force coef-
ficients, Cy and Cx, and the airfoil coefficients, C, and Cd. The
equations are

Cy = C, cos <f> - Cd sin <£ = C,(cos </> - e sin </>)

Cx = C, sin </> + Cd cos </> = C7(sin </> + e cos </>)

DISC PLANE-
Fig. 4 Force coefficients for propeller blade element analysis.

and the relations for the thrust 7" and torque Q' per unit
radius are then

T = ($)pW2BcCy

Q'lr = ($)PW2BcCx

(22a)
(22b)

Again, it is required that the loading Eqs. (22) be exactly
equal to the momentum result Eqs. (1). With the use of the
flow geometry in Fig. 1, this requires the interference factors
to be

where

and cr is given by

a = o-KI(F - <rK)

a' = <rK'/(F + aK')

K = Cy/(4 sin2 (/>)
K' = Cx/(4 cos 0 sin </>)

er = Bc/(2m)

(23a)
(23b)

(24a)
(24b)

Equations (23) correct the placement of the factor F used by
Glauert in his equations (5.5) of Chapter VII as identified by
Larrabee.4

The relation for the flow angle is obtained from Fig. 1 and
Eqs. (23) as

tan <t> = [V(l + a)]/[nr(l - a')] (25)

For determining the function, F, in Eq. (18), Glauert suggests
the relation sin $, = f sin 4> be used in Eq. (19). It is rec-
ommended that Eq. (21) be used instead, i.e.,

tan </>, = £ tan </>

which is exact for the analysis of an optimally designed pro-
peller at the design point.

The analysis procedure requires an iterative solution for
the flow angle </> at each radial position, £. An initial estimate
for </> can be obtained from Eq. (8) by setting £ equal to zero.
Since j3 is known, the value for a in Fig. 3 is /3 — <£, and the
airfoil coefficients are known from the section data. The
Reynolds number is determined from the known chord and
W, which is obtained from Fig. 1 and Eq. (23a), and the new
estimate for <£ is then found from Eq. (25). A direct substi-
tution of the new <f> for the old value will cause adequate
convergence for an optimum design which is being analyzed
at the design point. However, for analysis off-design and for
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nonoptimum designs, some recursive combination of the old
and new values for <f> is required to cause adequate conver-
gence. Under some conditions (usually near the tip), con-
vergence may not be possible at all due to large values for
the interference factors, a and a', in Eq. (23). Since Fis zero
at the tip and a is not for a square tip propeller, the value
for a is - 1 and a' is +1. Such values are physically impossible
since the slipstream factors are approximately twice the values
at the rotor plane. Wilson and Lissaman10 suggest empirical
relations for resolving this problem, whereas Viterna and
Janetzke11 give empirical arguments for clipping the magni-
tude of a and a' at the value 0.7 (a/F at the tip is finite at the
design point for an optimum propeller).

For analysis, the conventional thrust and power coefficients
are

CT = TI(pn2D4)

Cp = P/(pn3D5)

Using Eqs. (22) and (24), the differential forms with respect
to f are given by

C'T = <rK')cos <t>}2

c; =
When these have been integrated from the hub to the tip, the
propeller efficiency is

77 = CTJ/CP

where/ = V/(nD) is the advance ratio. Propeller performance
is typically described by plots of Cr, Cp, and 17 vs /.

Airfoil Section Data
The proper accounting for blade section (airfoil) charac-

teristics has proven essential for accurate and reliable esti-

2.0-.
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RN = 0.5 x106
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0.2-,

"C/4 0.1-
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70 80
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Fig. 5 Example of airfoil section characteristics including normal and
chord force coefficients.

mation of propeller performance, and the extent of airfoil
data required for propeller analysis exceeds that which is typ-
ically used in analysis of wings. Between takeoff, climb, and
cruise, propellers typically operate over a relatively wide range
of blade section Reynolds numbers—a variation by factor of
5 is not uncommon. Also, during takeoff, climb, and wind-
milling, some portion of a propeller blade is likely to be stalled,
either positively or negatively. An example set of character-
istics for the NACA 4415 airfoil is given in Fig. 5. These
would be supplemented by additional drag data in the un-
stalled region for a range of Reynolds numbers.

Empirical Optimality
In Chapter VII of Glauert's work, his equation (2.20) shows

that when blade friction is neglected, the most favorable dis-
tribution of circulation is where the displacement velocity is
constant across the wake. Here, the term x2/(l + ;c2) is the
small-angle approximation of G, given by Eq. (5) in this ar-
ticle. The effect of profile drag is shown by Glauert in his
equation (3.5), which states that the optimum distribution for
the displacement velocity ratio is

f = Io - (26)

where the effect of profile drag on thrust has been ignored.
In order to study this problem empirically, consider a general
function H(x) and the two first-order terms of its Laurent
series, IIx and x, and describe the displacement velocity dis-
tribution as

£= £0 32/x (27)

which includes the case of Eq. (26). It is desired to find values
for 8l and 82 which maximize propeller efficiency subject to
the constraints of Eqs. (10). To solve this problem, £ in Eqs.
(10) is replaced by Eq. (27). Then, a choice for 5, and 52 will
enable a determination of £0 and a calculation of overall pro-
peller efficiency. A systematic study of various propeller con-
ditions was undertaken using the design and analysis proce-
dures of this article. Nonzero values for 5t and 82 that caused
an increase in propeller efficiency could not be found under
any conditions. Therefore, it was concluded that a constant
displacement velocity is at least locally optimum whether pro-
file drag is considered or not. Momentum and viscous losses
are then uncoupled; former is minimized by constant dis-
placement velocity, the latter by choosing a C, distribution so
that the drag-to-lift ratio is a minimum everywhere.

Some may criticize the authors for including viscous terms
in the development of the optimized circulation distribution
for the propeller design problem. Certainly, this is contrary
to classical lifting-line wing theory where the analogous elliptic
lift distribution is obtained inviscidly. However, it has been
shown that the combined momentum-circulation equations,
Eqs. (7), produce the screw surface equations, Eqs. (8), whether
viscosity is included or not. It is evident in Eq. (11) that the
momentum and viscous terms are directly separable for use
in Eq. (10). The viscous terms, when integrated in Eq. (10),
account for the difference in power and thrust between an
inviscid and viscous propeller design. If one accepts the clas-
sical blade element analysis equations as a measure of per-
formance, the momentum and viscous losses are indeed un-
coupled, and the viscous design equations produce a propeller
with minimal losses.

Alternatively, if one is still concerned about including vis-
cosity in the design procedure, a propeller could be designed
inviscidly and the blade section drag simply added to the
inviscid design. This would require that the analysis procedure
be applied with drag set equal to zero when solving for the
induction velocities. The performance of the propeller would
then be obtained by adding drag to this inviscid solution with-
out altering the induction velocities. However, this would
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Table 1 Propeller design solution

r

0.5000
0.8958
1.2917
1.6875
2.0833
2.4792
2.8750

c
0.3424
0.4605
0.4269
0.3569
0.2796
0.1913
0.0000

ft
58.3125
41.8645
32.2669
22.2978
18.7971
15.9619
13.8552

*
54.8118
38.3637
28.7661
22.7927
18.7971
15.9619
13.3552

RN
0.4449
0.8104
0.9834
1.0295
0.9740
0.7830
0.0000

a
0.0348
0.0644
0.0804
0.0890
0.0938
0.0968
0.0000

a'
0.0633
0.0365
0.0219
0.0142
0.0098
0.0072
0.0000

Input: brake horsepower = 70, 2 blades; hub diam = 1 ft, tip diam = 5.75 ft; blade section: NACA
4415, C, = 0.7, velocity = 110 mph, rpm = 24001.
Output: thrust = 207.61 Ib, 77 = 0.86996.
Note: a and a' have been set equal to zero at the tip.

Table 2 Propeller analysis solution

r
0.5000
0.8958
1.2917
1.6875
2.0833
2.4792
2.8750

*
54.8116
38.3638
28.7661
22.7927
18.7971
15.9619
12.5862

c,
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000
0.7000

RN
0.4449
0.8104
0.9834
1.0295
0.9740
0.7830
0.0000

a

0.0348
0.0644
0.0804
0.0890
0.0938
0.0968
0.0000

a'
0.0633
0.0365
0.0219
0.0142
0.0098
0.0072
0.0000

Input: propeller geometry from Table 1; r, C, and /3 at the same radial locations; velocity =110 mph,
rpm = 2400.
Output: brake horsepower = 70, thrust = 207.61 Ib, 17 = 0.86996.

DISC PLANE

Fig. 6 Force coefficients for windmill blade element.
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Fig. 7 Example of propeller performance.

1.00

require an additional layer of iteration to achieve a specified
design thrust or power. In light of the favorable agreement
between the present theory and the experimental results given
later in this article, it is argued that such an increase in com-
plexity is not justified.

Windmills
All of the analyses described in this article are directly

applicable to the windmill problem after a minor adjustment
in the angle definitions of Fig. 1. The corresponding flow
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Fig. 8 C, distributions for example propeller.
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Fig. 9 Comparison of theory and experiment.

geometry for a windmill is shown in Fig. 6, where the primary
distinction is that the blade section is inverted (as compared
with a propeller), and the local angle of attack is measured
from below the local velocity vector. Corresponding relations
for the angles are

windmill a = </> - /3

propeller a = ft — $
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Fig. 10 Comparison of propeller analyses thrust coefficient.

as shown in Figs. 6 and 1, respectively. In these figures, C,
for the windmill is negative with respect to that for the pro-
peller, and this sign change together with the angle definition
will convert the propeller methods to the windmill application.
For the design case, the input Pc value should be negative,
and the resulting values of v' (and the interference factors a
and a') and Tc will also be negative. (Thrust is of less interest
for a windmill since it typically represents the tower load and
is not a main performance parameter.) Similarly, the analysis
results for a windmill rotor will yield negative values for both
Pc and Tc.

Examples
As a sample calculation, the design of a propeller for a light

airplane is considered. The design conditions and the resulting
design are described in Table 1 which gives for each radial
station: blade chord, blade pitch angle, local flow angle, local
Reynolds number, and the interference coefficients a and a'.

This propeller geometry has, in turn, been analyzed at the
design condition and the result is given in Table 2. Agreement
is virtually exact. Analysis over a range of values of the ad-
vance ratio, J = V/(nD), provides the typical propeller per-
formance plots which are shown in Fig. 7, and Fig. 8 gives
the blade lift coefficient distribution over a range of /s where
the design condition is the C, — 0.7 and is a constant line at
J = 0.7.

A calibration of the method is given by comparing its the-
oretical prediction with experimental results. Reid12 has eval-
uated several conventional propellers extensively by experi-
ment, and one of these has been chosen for comparison.
Figure 9 gives Cp, CT, and 77 vs / for both Reid's experiments
and the corresponding theoretical prediction. The agreement
here is quite good, with most of the disparity occurring after
the blade is stalled. This propeller uses NACA 16-series air-
foils, and no poststall data were available.

Figure 10 gives the comparison of the blade thrust coeffi-
cient distribution as measured by Reid and calculated by the
method. Two theoretical results are shown: one using F, and
the other using the more complex (from a calculation point
of view) K. In principle, the accuracy of the method should
be better with the Goldstein factor for a propeller with few
blades—this example had three blades—and the two factors
should give similar results as the number of blades is in-
creased. The results of Fig. 10 confirm this trend, and the
overall comparison for both factors is regarded as quite good.

Conclusions and Recommendations
The propeller theory of Glauert has been extended to im-

prove the design of optimal propellers and refine the calcu-
lation of the performance of arbitrary propellers. Extensions
of the theory include 1) elimination of the small angle as-
sumptions in the optimal design theory; 2) accurate calcula-
tion of the vortex displacement velocity which properly ac-
counts for the blade section drag; and 3) elimination of the
small angle assumptions in the Prandtl momentum loss func-
tion for both design and analysis. These extensions bring the
design and analysis procedures to exact numerical agreement
within the precision of computer analysis.

The primary approximation remaining in both procedures
is the use of the axial momentum equations which require the
increase in wake velocities to be twice those at the disc. Under
certain conditions this approximation is not good and gives
rise to the unnatural conditions and convergence problems
described in the analysis section. Improvements might be made
by replacing the axial momentum equations with relations
more closely aligned with the general theory, particularly in
those differential stream tubes in which "heavy loading" ex-
ists. Such conditions appear to be more prevalent in the anal-
yses at off-design conditions than in the design itself, and,
when combined with poststall misknowledge, can lead to large
errors in analysis. However, for design and analysis within
the conventional operating regime, both procedures are sim-
ple, accurate, and reliable. This method has been extended
by Page and Liebeck13 to the design and analysis of dual-
rotation propellers. A favorable comparison between theory
and experiment was also observed.
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