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We want to know how accurate our design calculations for light low speed aircraft are and also if there are places on the speed-power map for all aircraft that give a desirable 
combination of low power combined with manoeuvrability.

When Gossamer Condor won the Kremer figure of eight prize in 1977 no practical CFD codes existed for the design of low Reynolds number airfoils or aircraft and Larrabee 
had not yet formulated an algorithm for the design of lightly loaded propellers. It thus seems interesting to have another look at a few of the better documented aircraft to com-
pare calculation using CFD with flight test data and pilot power estimates, in part to construct an accurate map of the design space in which these aircraft operate and in part to 
see if improvements future designers can exploit are possible.

Gossamer Condor

Paul MacCready produced a set of detailed engineering drawings for the Gossamer Condor which the author redrew from a set in the HPFG archive. (These are available 
online.) So it was possible to use these to produce a 3 view drawing and hence measure all the bracing wire lengths and angles in order to calculate the total wire drag. (Cda = 
0.196) And since a drawing for the propeller existed it was possible to calculate the propeller efficiency using XROTOR and found it close to 80%. 

The approach adopted was to use several CFD codes and a lifting line model with the method of images to model ground effect and then put the resulting drag polar into a 
spreadsheet. Wing Cdo (profile drag) could then be degraded to allow for poor surface accuracy and wrinkled covering, bracing wire, king post, diamond post, bowsprit, gap 
and cooling drag added and the result multiplied by propeller and drive train efficiencies to produce power and specific power polars. In the case of the Gossamer Condor no 
flight test data exist but P. Lissamen [6] estimated the power to be between 0.3 - 0.35 hp, 224 - 261 W giving specific power between 3.59 and 4.19 W/kg

We also know the flight time and distance, hence airspeed, of the competition flight as follows: 

Gossamer Condor Kremer figure of eight prize 23 August 1976

Pilot Bryan Allan
Take off 07.30

Flight Time Distance Pilot weight Airspeed
min m kg m/s

Kremer figure of eight prize 6:22.5 1850 62.27 4.84
Total flight time 7:27.5 2172 4.85

Shafter airport is 129 m above sea level. The air temperature was 18 degrees C, dew point 15 degrees C and pressure 1018 mb at 07.30 on 23.8.1976. These figures give an air 



density of 1.2103 If the met station data underestimate the temperature on the tarmac then at 21 C the density would be 1.198 and at 25 degrees C 1.18 kg/m3 (For comparison 
the standard atmosphere density at sea level is 1.225 kg/m3) These data are from a nearby weather station.

Since it was not clear how much ground effect is actually present (see later section) or how much the drag was degraded by inaccuracies and wrinkles several polars were 
calculated corresponding to flight at different altitudes all with 19-25% increase in profile drag and one with fully turbulent flow. These are shown in figure 1. For comparison 
a polar for a clean wing with no degradation in drag flying in ground effect is shown. It is clear that worthwhile improvement is possible. 
Given they only just managed to make the flight these estimates seem realistic.

It is obvious that considerable performance gains are possible by cleaning up the aircraft. These could be exploited by flying at the same speed at much lower power. Given 
the delight the whole world had from watching the Condor fly - and an academy award for the best documentary the author feels strongly this is a nieche worth flying in.

They chose to fly faster and to cross the channel instead.

Gossamer Albatross

As above with less pessimism about the accuracy of the wing section. The vertical dashed line corresponds to the ground speed measured during the first hour long flight at 
Harper dry lake and to the calculated still air flight time for the channel crossing. The flight test power polar is from Fig 2-2, Ref. 5

Daedalus 88

It was assumed the aircraft was clean and only a few percent were added to the drag. Drag was calculated at three heights corresponding to those in [9]. And flying out of 
ground effect. The circles are flight test data from the NASA report. They say that during some flights they encountered lift and the power dropped to zero. This probably ac-
counts for some of the low experimental values.

Mowe 13

The data and drawings for this are from: Nomura [9.] Three points are shown in the plot corresponding to data taken from their flight tests.

Airglow

Polars are calculated at three different weights. What the author thought it weighed and what it actually weighed at Lasham in 2015. 

Betterfly

This is where the author started. He had drawn the plan from measurement and photographs taken at Lasham and from notes, calculations and photographs provided by David 



Barford and Chris Roper. Then he thought it would be helpful and interesting to add the power polar to the plan. The calculations became quickly more elaborate and detailed 
in an effort to achieve accuracy and to search for improvements. 
Betterfly is interesting because it has nice controllability. Two pilots learned to fly in it, both going solo on their first flights and neither crashing. 
The power is high but can be drastically reduced my reducing the weight. The good news being that this should be easy simply by replacing the velair derived structure with 
an entirely wire braced structure constructed from smaller lighter tubes and by carefully minimising the weights of details.

Daedalus flight test and the effects of atmospheric turbulence on drag

Sullivan and Zerweckh [9] observed an inverse ground effect during flight tests of the Daedalus 88 and make the following observations and suggestions regarding the cause 
of this.

“There is some subjective data that also supports this theory. When Kanellos Kanellopoulos flew the Daedalus aircraft from Crete to Santorini, Greece, he observed that when 
flying at 12 meters (39 ft), the required power was less than when flying closer to the surface of the water. Also, during the crossing of the English Channel by the Gossamer 
Albatross, Bryan Allen was almost forced to abort the flight due to the high power required when flying at an altitude of 1.5 meters (5ft), However when he increased his alti-
tude to 4.5 meters (15 ft), he found that the required power decreased and he was thus able to complete the flight [9]. Although most of the upper surface of the Albatross wing 
was probably turbulent (judging from the particular air foil on the Albatross), it is possible that the atmospheric turbulence during Alien’s flight was of sufficient intensity to 
trip the laminar boundary layer on the bottom surface of the wing. This could explain the higher power at the lower altitude.” [ref. 9 p76]

And “The data from sections of Flights 307D and 307E (see Table 4-2) have not been plotted in Figure 4-21 due to the widely varying power estimates. The decision to ignore 
these results was made only after carefully examining the time histories of the energy input., the altitude, the airspeed, the rudder deflections, and the sideslip angles. Flights 
307D and 307E were the last flights performed on the day the power measurements were made; as a result, they may have been performed during a time of increased thermal, 
activity and therefore greater turbulence. This increase in turbulence has been observed to start quite abruptly on Edwards Dry Lake bed and to wary considerably from loca-
tion to location on the lake bed. This second effect has been attributed to the damp condition of the lake bed, a result of the frequent rains. The damper portions tended to be 
darker and therefore tended to exhibit greater thermal effects; furthermore, the water vapour rising off the damper portions also tended to create vertical air movements. The 
effect of these air movements can be seen in the data from these two flights (see Appendix C for the raw data from Flights 307D and 307E). In Figure 4-22, the energy time 
history for Flight 307D shows that the power input is very inconsistent; data from previous flights exhibited a much more linear behaviour. It is clear that between 80 and 100 
seconds, the power required to fly the aircraft is nearly zero, as indicated by the nearly horizontal slope. This event is also accompanied by a rapid increase in altitude. Con-
sequently, it appears that the aircraft was flying through a upward moving thermal. However, after the aircraft leaves this thermal, the associated sink is encountered, thereby 
increasing the power required to fly the aircraft. This explains the high power estimate for the first section of Flight 307D. Because of these disturbances, this data point 
was deleted from Figure 4-21. The power estimate for the second section of this flight is not unreasonable; however, the thermal effects clearly cause abrupt changes in the 
slope of the energy time history. These effects raise doubt as to the accuracy of the power estimate made during this time; as a result, this estimate has also been deleted from 
Figure 4-21. Similarly, data from Flight 307E appears to be significantly distorted by thermal effects as demonstrated by the short term changes in the slope of the energy plot 
and by the poor fit in the energy error plot (Figure 4-23). To demonstrate these effects, the data from this fright have been evaluated over nine separate intervals (Table 4-2). 
This analysis shows that the power drops significantly as the aircraft gains altitude and increases greatly when altitude is lost; however, the decrease in power with altitude 
is too large to be explained by the inverse ground effect theory. This implies that strong air currents are being generated that cause the aircraft to gain and lose altitude. The 
lower power estimates occur during periods of updrafts; the higher power estimates occur during periods of downdrafts.” [ref. 9 p83]

While this seems plausible the author wonders if in the case of Gossamer Albatross the aircraft was flying through some wave like structure in the flow over the water. Even in 
calm conditions there is usually a swell running that is not obvious in photographs which the wind must blow over. The resulting flow field will depend on the relative angle 



and velocity of the wind to the swell and to amplitude and wavelength of the swell. The author speculates this will impose a span wise unsteady load distribution on the wing 
that will increase the induced drag.

It is known from flow visualisation of the DAE 1335 section used on the MLE that the wing had the extensive laminar flow predicted by XFOIL: “After it was towed to 
altitude without the propeller. Flow visualisation tests were performed by applying a mixture of kerosene and black powder dye to the wing at various span wise locations 
and towing the aircraft at one airspeed for several minutes. The high shear stress of turbulent flow caused the powder dye to flow into a streaked and mottled pattern, while 
in laminar regions the powder remained in the same smooth, featureless layer as at the time of application. Although the kerosene did not evaporate completely in flight, the 
powder dye pattern persisted for a sufficiently long time after landing to permit its measurement and photography. Three tests were performed at lift coefficients of 1.04, 1.20, 
and 1.40. Photographs of the flow patterns on the upper wing surface of the Cl = 1.04 test are shown in Fig. 13. The bottom surface of the wing was found to be fully laminar 
at all operating lift coefficients as expected.” [Drela ref. 3]

R. Lean has also confirmed this with wind tunnel tests of a full size piece of wing in the Gastor and Markham wind tunnels at Cambridge.

The author suggests investigation of these effects using a microphone and solid state sound recorder to listen for turbulence on the lower surface of an HPA flying in various 
conditions.

R. Lean observed to the author that ground effect is predicted by inviscid theory and though there is extensive flight test data confirming its existence for heavily loaded (by 
HPA standards) aircraft it may not always be present for a very lightly loaded slow flying aircraft. He suggests using smoke to flow vis the trailing vortex sheet of some HPAs.

It should be added to this speculation that comparison of flight test data with the calculations performed here clearly show that ground effect must be present at least some of 
the time for HPAs.
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Gossamer Condor flown by Bryan Allan 
Picture Don Monro from the RAeS archive
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Gossamer Condor Crew

Bryan Allen
Bill Bueby
Jim Burke
Lin Burke
Sam Duran
Phil Esdale
Henry Jex

On 23rd August, in ideal conditions with a windspeed of less than 2 knots, Bryan Allen made one of
his typical 30ft take-off runs toward the north pylon on Shafter Airport runway. After a 500ft
cruise it was all systems 'go' as Bryan cleared the Tee bar on the start line and observer Bill
Richardson, a long experienced aviator who was appointed to authorise any claim, clicked his
stopwatch. Bryan was soon into the first, right turn after 250 more feet and he made a 425ft
diameter 180 degree sweep around the marker to head for the south pylon, 2,640ft away. It was a
smooth cruise of almost three min-utes, then another sweeping left turn to re-trace his course back
north-wards. As he neared the original take-off point, eager followers yelled encouragement and with
one last effort Bryan took the Condor over the Tee bar to finish at precisely 6:22.5. He had traced
an almost perfect figure eight, the flightpaths were a mere 9ft 7in. apart on the start/finish line

Gossamer Condor

Jack Lambie

Aircraft data

Span 29.28 m
Wing area 66.3 square meters
Aircraft mass 31.8 kg
Pilot mass 62.27 kg
Gear ratio 1.19
62 teeth at cranks
52 teeth at shaft
Cadance 90 rpm
Propeller 107 rpm

0.036 wire

0.036 wire

1/4 tape

0.015 wall

0.015 wall

0.018 wall

Taped at trailing edge
Covering 1/2 mil MYLAR RIB 10

RIB 1

RIB 2

RIB 3

RIB 4

RIB 5

RIB 6

RIB 7

RIB 8

RIB 9

Brace wire

Corregated cardboard leading edge sheeting

Wire along leading
edge pulled tight

0.020 wall

36' wing attach point

24' wing attach point

12' wing attach point

Landing wire attach point

Jack Kyle
John Lake
Jack Lambie
Karen Lambie
Kirk Leonard
Peter Lissaman
Judy MacCready
Marshall MacCready
Parker MacCready
Paul MacCready
Tyler MacCready
Joe Mastropaolo
Paul McKibben
Greg Miller
Vern Oldershaw
Maude Oldershaw
Bill Richardson
Dave Saks

Kremer figure of eight prize 23rd August 1977 at Shafter Airport
Take off 07.30
Time to fly the course 6:22.5
Distance flown round course 1850
Airspeed 4.83 m/s
Total flight time 7:30
Total distance flown 2172 m
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Wire No. length diameter diameter Wire Cd angle Cd corrected Cda

both sides m inch mm for wire angle

inner lift 2 4.74 0.028 0.711 1.18 90 1.180 0.008

mid lift 2 7.90 0.022 0.559 1.18 90 1.180 0.010

outer lift 2 11.28 0.031 0.787 1.18 90 1.180 0.021

outer lift to diamond strut 2 11.28 0.031 0.787 1.18 90 1.180 0.021

warp 2 11.28 0.022 0.559 1.18 90 1.180 0.015

inner landing 2 6.70 0.028 0.711 1.18 90 1.180 0.011

mid landing 2 4.85 0.022 0.559 1.18 90 1.180 0.006

outer landing 2 8.34 0.022 0.559 1.18 90 1.180 0.011

mid drag wires 2 11.96 0.022 0.559 1.18 90 1.180 0.016

diamond landing 2 7.40 0.022 0.559 1.18 90 1.180 0.010

diamond lift 2 7.40 0.022 0.559 1.18 90 1.180 0.010

drag / bowsprit inner 2 4.38 0.022 0.559 1.18 55.9 0.670 0.003

drag / bowsprit mid 2 8.77 0.022 0.559 1.18 55.7 0.665 0.007

drag / bowsprit outer 2 12.74 0.022 0.559 1.18 58.6 0.734 0.010

drag diamond 2 5.31 0.022 0.559 1.18 70 0.979 0.006

prop shaft to 36’ attach 2 11.28 0.022 0.559 1.18 90 1.180 0.015

prop shaft to seat 2 3 0.022 0.559 1.18 90 1.180 0.004

prop shaft to king post 1 4.19 0.022 0.559 1.18 48.3 0.491 0.001

canard lift wire 1 6.8 0.022 0.559 1.18 90 1.180 0.004

king post / bowsprit inner 1 4.13 0.022 0.559 1.18 61.5 0.801 0.002

king post / bowsprit mid 1 5.82 0.022 0.559 1.18 47.9 0.482 0.002

king post / bowsprit outer 1 6.88 0.022 0.559 1.18 43.3 0.381 0.001

bowsprit inner lift 1 2.37 0.022 0.559 1.18 47 0.462 0.001

bowsprit mid lift 1 3.90 0.022 0.559 1.18 21.2 0.056 0.000

bowsprit outer lift 1 4.80 0.022 0.559 1.18 13.2 0.014 0.000

drag diamond upper 2 3.20 0.022 0.559 1.18 29.2 0.137 0.000

drag diamond lower 2 3.20 0.022 0.559 1.18 29.2 0.137 0.000

�����

Calculation of wire drag for Gossamer Condors using a spreadsheet
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0.280.14 0.16 0.18 0.20 0.22 0.260.24

Gossamer Condor Propeller
Power 250 W
Airspeed 4.77 m/s
107 rpm
Blade twist at tip 17.8°
Advance ratio 0.2376

Calculation of Gossamer Condors propeller efficiency, using the drawings from Paul MacCready’s plans set and XROTOR 
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Gossamer Condor

Figure 1. Calculated power polars for Gossamer Condor for several assumptions.



Betterfly at Sywell
Photo Ian Johnson



Betterfly takes off at Sywell
Photo R. Young



Betterfly being test flown by Bill Brooks at Kemble
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Calculated power polars for Betterly for several assumptions.



Gossamer Albatross plan. Drawing by A.A.P. Lloyd. From measurements taken at RAF Manston.



Slide from a talk given by Bryan Allan at Aerovironment’s 40th Anniversary. [17]

“Quick & Dirty” shows its limitations

Loss of  control, 1978 @ Shafter. due to control-system failure; I still have scars. Substantial 
structural damage from this and five other crashes, plus modifications made for transportability, 

led to this craft (GA #1) gaining fifteen pounds from its original fifty-five pounds

Don Monroe photo



Slide from a talk given by Bryan Allan at Aerovironment’s 40th Anniversary. [17]

One Hour, Nine Minutes, Three Seconds
Harper Dry Lake, April 25, 1979

In my mind, the single-most noteworthy event in 
human-powered ight. Photo by Peggy Darnell



Gossamer Albatross in flight on its way to France
Photo Ron Moulton
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Gossamer Albatross flying out of ground effect
Published in NASA test flight data

Gossamer Albatross flying with the wing at a height of 5 m, i.e. the wheels at a height of 3 m

Gossamer Albatross

Gossamer Albatross power polars for several assumptions.



Structure of airflow over water waves.



Structure of airflow over water waves, showing smoother air flow as altitude increases.
Remember that though the wind may be light there may also be a less visable long wave swell running that the wind must flow 
over.



Daedalus in flight on its way to Satorini
Photo J McIntyre



1 m/s added to reported ASI readings to compensate for calibration error
Altitudes correspond to those given in the report

0

100

200

300

400

97 82 4 5 6 97 80 1 2 3 4 5 63

NASA flight test data marked as circles

Flight test results for the Daedalus and Light Eagle human powered aircraft
R. Bryan Sullivan and Siegfried H. Zerweckh
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Power polars for NASG Mowe 13 with flight test data plotted as circles
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Airglow flying at Lasham.
Photo Fred To.
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Power polars for Airglow for several assumptions.



Velair 89 flying
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